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OBJECTIVES 
* Investigate issues affect Ics in thick film HTS coated conductors and develop schemes to 
improve the Ics 
* Understand the physics associated to the deparing current density Jd in HTS films 
* Develop diagnostic tools for investigation of instability of HTS coated conductors 
 
This three-year project started on July 1, 2006 and finished on June 30, 2009. This final report 
summarizes the major progress made during the three year project period. Two students 
equivalent were supported during the reporting period. Research on the three objectives has been 
carried out in parallel with progress made summarized in the following. The details of the 
progress made can be found in a book chapter, 22 published papers and a pending patent. 

 
Objective 1: Critical current in thick HTS coated conductors 
Objective 1 has been focused on understanding the physics responsible for the thickness 
dependence of Jc in the HTS thick film coated conductors, and from which to develop schemes to 
eliminate it. In a systematic study of Jc-thickness behavior over a large range of temperature and 
magnetic field, we have confirmed that the weak collective pinning by native point defects in 
YBCO films is a dominant mechanism responsible for the observed Jc reduction with increasing 
thickness (Wang and Wu, PRB76, , 184508 (2007). The central point is the thickness dependent 
pinning force per vortex length Fp in the point defect case. To achieve a constant Fp so as to 
eliminate the thickness dependence of Jc, a possible solution is to replace “native” point defects 
with through thickness linear defects as shown in Fig. 1. Two schemes have been explored in 
details. One is to chop vortices to shorter pieces in a multilayer YBCO/CeO2 structure. The 
insertion of an insulating layer between two YBCO layers decouples the long vortices into 
shorter segments than can be pinning independently [Wang, APL88, 062513(2006)]. This 
scheme leads to Fp(thick)=Fp(thin) so Jc-thickness will take the red curve shown in Fig. 1(a). 
Although no thickness dependence of Jc will occur, the Jc value is low and fabrication procedure 
will be complicated for growth of additional insulating layers. The other scheme explored in this 
project is to grow through thickness linear defects such as nanotube pores (NTPs) in YBCO 
films and BaZrO3 (BZONRs) nanorodes. In both cases the thickness dependence of Jc is either 
eliminated or much reduced (See Fig. 1(b)). In the YBCO/NTP case, the effect of the NPTs on 
the thickness dependence of Jc is only limited to low magnetic fields below 0.1-0.2 T, which is 
attributed to low density of NTPs in YBCO films since the matching field of NTPS is on the 
order of 0.1-0.2 T. However, NTPs seem to cause less stress on the YBCO lattice so the overall 
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Jc values are high in the low field region where NTPs are efficient (Wang and Wu, Phys. Rev. B 
77, 144525 (2008)). At higher fields, the collective pinning style thickness dependence of Jc is 
resumed, suggesting higher density NTPs are necessary to extend the effect of NTPs to higher 
field. In the case of BZONRs, no thickness dependence of Jc was observed at magnetic fields up 
to 5T, which is our measurement limit (Wang and Wu, preprint). It should be pointed out that the 
matching field of 2% vol BZONRs is approximately 5-10 T, so the benefit of BZONRs on the Jc-
thickness behavior is expected to extend to even higher fields. One issue that must be addressed 
is the degradation of the Jc values in YBCO/BZONRs films, which is typically 50-100% lower 
than that YBCO control samples. Since high stress is generated by insertion of BZONRs, a 
counter mechanism must be developed to reduce the stress so as to reduce the Jc degradation. 
This work is underway currently. 
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Figure 1(a) Schematically shown is the typical Jc−t of standard YBCO films (black) which can be 
interpreted as interplay between CP and TAFM25. The TAFM dominated region is typically below 0.1 μm 
for T less than 77 K but expands with increasing T. The 2D collective pinning region is located between 
tm and Lc where Jc follows the dependence of Jc∝ t-1/2. Less Jc−t is expected as t exceeds Lc due to the 
recovered flux line elasticity. Insets show a vortex with length t< Lc collectively pinned by randomly 
distributed point defects (black), decoupled into two identical segments in a trilayered 
YBCO/CeO2/YBCO (red) and an ideal solution to eliminate Jc−t by overpowering the point defects with 
linear pinning centers. The resultant thickness independent Jc with high value can be achieved (blue); (b) 
experimental Jc-t curve measured on YBCO with NTs (black) is compared with that on standard YBCO 
(red).  
 
Objective 2: Approach the depairing Jc in HTS films 
 
Objective 2 focuses on enhancing the Jc in practical HTS coated conductors to Jd. It should be 
realized that the best Jc on optimized YBCO films is still an order of magnitude lower than the Jd 
predicted theoretically. This issue has been challenging our understanding of the underlying 
physics of Jc. In conventional superconductors, Jd was achieved in thin narrow bridges with both 
transverse dimensions much smaller than the London penetration depth. To address this issue, 
we have developed a novel process to make highly porous YBCO films. Nanopores have a 
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unique advantage over their nanoparticle counterparts for vortex pinning due to the chemical-
contamination free interface with HTS matrix, which is critical to achieve the optimized pinning 
potential energy and not to degrade the HTS matrix. Motivated by this, we have developed a 
PONSE process (Pores by nanoscale strain engineering, US patent pending). Nanopores have 
been obtained via nanoparticle (NP)-facilitated strain manipulation on YBCO lattice. In our 
process, a large number of NPs are inserted either near the film/substrate interface or during the 
YBCO film growth. The local tune of the strain by the inserted NPs over the globally strained 
YBCO lattice on vicinal substrates plays a critical role in pore nucleation and evolution. A large 
number of pores of dimension from few to hundreds of nanometers formed uniformly via self-
assembly growth. The density of the nanopores in the range of 5+3 pores/μm2 corresponds to an 
accommodation field Hm ~ 4.1-16.6 mT. Significantly enhanced Jc up to 8.3 MA/cm2 at 77K and 
SF has been obtained on these samples, which is twice of the standard YBCO film’s Jc and ~17-
20% of Jd, the highest so far achieved in YBCO films (Wu at al, APL 93, 062506 (2008)). A 
close correlation between Jc and the magnetic pinning potential Up of the nanopores has been 
demonstrated below the accommodation field Hm, confirming that nanopores are strong pins on 
the magnetic vortices (Fig. 2). This work was featured as a Technology Update on the IOP 
Nanotech Web on October 17, 2008.  To improve the overall Jc, especially in high B field of 
several Teslas, we have collaborated with AFRL to add nanoparticles (211 and BZO) into the 
porous YBCO films and several manuscripts have been submitted/written. Overall enhanced Jcs 
have been obtained by combining nanopores and nanoparticles.  
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Fig. 2. Left: transport Jc measured on several YBCO sponge films in comparison with a regular one made using the 
same YBCO target under the same processing condition. Right: AFM image of an YBCO sponge film and lower-
inset: a TEM image of the film/substrate interface of a porous YBCO film on a 15º STO substrate.  
 
 
Objective 3: Development of an advanced SPM system and investigation of current flow in 
coated conductors   
Objective 3 has been focused on development of advanced characterization tools and the goal is 
to be able to map the physical properties of coated conductors at both microscopic scale for 
understanding the underlying physics and macroscopic scale for reel-to-reel quality control of 
coated conductors. We have further developed our near-field microwave microprobe (NSMM) 
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for mapping the electrical current distribution in a metallic film and demonstrated a spatial 
resolution of ~ 5-10 μm on a 150 μm wide metal strip. In addition, several maps can be taken 
simultaneously using the microwave microprobe at resolution of 0.5-1.0 μm for identification of 
various defects in conducting films of variable thickness. We have obtained interesting results on 
YBCO films and made simulation of the microwave induced local heating in conducting films. 
Recently, we have completed assembling and testing of our low-temperature chamber for 
NSMM and have made investigation of dissipation and instability in YBCO microbridges with 
and without grain boundaries (GB) using a combination of NSMM and electrical transport 
measurement. The NSMM measurement shows low level dissipation development at 3-4 orders 
of magnitudes lower than the detection limit of the transport measurement. The dissipation 
increases more or less linearly with applied bias current until the threshold voltage for 
determination of Jc is reached, as shown in Figure 3.  The presence of GB on the microbridge 
causes much higher dissipation as compared to the case without GB, suggesting GB is indeed a 
high dissipation area which could lead to thermal instability of superconductor devices. 

NSMM 

I 

Fig. 3. Left: schematic description of the combined IV-NSMM setup; middle: comparison of dissipation 
detected simultaneously with IV (blue) and NSMM (red) on a YBCO microbridge; and right: dissipation 
detected using NSMM at 84K (red) and 87K (blue) on a YBCO microbridge. The detection limit of IV 
measurement is shown as a dashed line labeled “Ic”.   
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